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Sect ion  1 

Chebyshev pseudospec t ra l  methods [3]  provide a h ighly  a c c u r a t e  d i s c r e t i -  

z a t i o n  f o r  the  genera l  evo lu t ion  problem 

aU 
a t  - =  LU. 

B r i e f l y  s t a t e d ,  i f  

t i o n  method, one so lves  the  equat ion  

PN i s  the p ro jec t ion  ope ra to r  induced by t h i s  d i s c r e t i z a -  

N aU 
- = P U U  a t  N N N’  

which is  a f i n i t e  dimensional equation. Convergence of t h i s  method f o r  

0 < t < T is  achieved i f  

(1.3) l i m  IluN(t) - u ( t ) n  = 0 
N- 

and t h i s  is  assured  i f  

(1.4) 

where C ( t >  

P u t  
II e I G C ( t )  

does not depend upon N. 

f o r  a l l  0 < t < T, 

O c t < T ,  

When t.,e s o l u t i o n  u eventua l ly  reac..es a s teady  state it  is important  

t o  know whether uN reaches a s teady s t a t e .  This  r e q u i r e s  t h a t  

(1.5) l i m  e = 0, 

f o r  f i x e d  N. 

It should be noted t h a t  equation (1.5) desc r ibes  a very d i f f e r e n t  l i m i t  

p rocess  than  (1.4).  In (1.4) we f i x  t and ask f o r  convergence as the mesh 

s i z e  1 / N  t ends  t o  zero,  s o  f o r .  example i f  C ( t )  e t h e  method i s  

t o  tend t o  zero  as s t a b l e .  However, i n  (1.5) we f i x  N and r e q u i r e  e 

t 

P ~ L P ~ t  

t tends  t o  i n f i n i t y ,  so t h a t  a C(t)  bound i n  (1.4) t h a t  grows i n  t i m e  will 

not  s u f f i c e  f o r  s teady  s ta te .  



Equation (1.5) i s  a s ta tement  about the spectrum of the  ma t r ix  PNLPN 

i.e.,  t h a t  the  eigenvalues  of PNLPN have negat ive  real p a r t .  Moreover, many 

numerical  methods f o r  the  s o l u t i o n  of (1.2) r e q u i r e  t h a t  i f  t h e  spectrum of 

L i s  r e a l  so a l so  must be the  spectrum of PNLPN. 

I n  the  following we cons ider  t he  hea t  equat ion  

u = u  - l ( x < l  t > 0, 
t xx (1.6) 

w i th  the  general  boundary cond i t ions  

(1.7) 

aU 
W ( l , t )  + B ax ( 1 , t )  = 0 

aU yu(-1, t )  + 6 - ( - 1 , t )  = 0, ax 

and i n  Sec t ion  I1 we i n v e s t i g a t e  the  range of a,B,y,G f o r  which (1.6) pos- 

sesses s teady  s ta te  s o l u t i o n s .  In  Sec t ion  IT1 we review and modify some con- 

d i t i o n s  t h a t  assure  t h a t  a polynomial has nega t ive ,  real and d i s t i n c t  roo t s .  

The s o l e  purpose of Sec t ion  111 i s  t o  provide t e c h n i c a l  t o o l s  f o r  t he  main re- 

s u l t  of t h i s  paper, i.e., Theorem (4.5) i n  Sec t ion  I V .  

Sec t ion  I V  con ta ins  the  main r e s u l t  of t h i s  paper.  I n  t h i s  s e c t i o n  w e  

i n v e s t i g a t e  the  pseudospec t ra l  Chebyshev method f o r  t h e  problem (1.6) - (1.7) 

f o r  a subse t  of t he  range of t he  parameters  a,B,y,G discussed  i n  Sec t ion  

11. W e  f i n d  an e x p l i c i t  r e p r e s e n t a t i o n  of t he  c h a r a c t e r i s t i c  polynomial of 

t h e  ma t r ix  PNLPN t h a t  corresponds t o  (1.6) - (1.7) and, by us ing  t h e  theory  

d iscussed  i n  Section 111, we prove t h a t  t h e  r o o t s  of t h i s  polynomial,  i.e., 

t h e  e igenvalues  of the  matrix, are real, nega t ive ,  and d i s t i n c t .  

In  Sec t ion  V we d i scuss  an a p p l i c a t i o n  of t he  theory  t o  t h e  f u l l  poten- 

t i a l  equat ion  a r i s i n g  i n  f l u i d  dynamics. This  problem motivated t h e  theo re t -  

i ca l  problem (1.6) - (1.7) because we found it necessary  t o  pa tch  several com- 



problem can be put i n  the  form (1.6) - (1.7) ( f o r  small Mach numbers) and 

t h e r e f o r e  a l lows a s tandard  i t e r a t i o n  technique t o  be used. 

Sec t ion  11 

I n  t h i s  s e c t i o n  we i n v e s t i g a t e  the pa rabo l i c  equat ion  

u = u  t xx x < 1  

au(1) + Bu (1) = 0 x -  
( b )  Tu(-1) + 6ux(-1) = 0 a,y > 0. 

I n  p a r t i c u l a r  w e  address  ou r se lves  t o  f i n d i n g  those  a , 8 , y , 6  f o r  which the 

s o l u t i o n  u ( x , t )  of (2.1) converges to the  s teady-s ta te .  

C e r t a i n l y  u ( x , t )  does not converge t o  s teady  s ta te  f o r  a l l  a,B,y,6 , 
f o r  example, i f  a = B = Y = 6 = 1 the s o l u t i o n  of (2.1) i s  

# 

t-x u ( x , t >  = e , 

and t h i s  s o l u t i o n  d iverges  as t + Q). 
The fol lowing theorem gives  an a l g e b r a i c  r e l a t i o n  between the  c o e f f i -  

c i e n t s  a,B,y,6 such t h a t  a s teady  state s o l u t i o n  does exist 

Theorem (2.1).  L e t  u ( x , t )  be a s o l u t i o n  of (2.1). Then u ( x , t )  con- 

verges  as t + i f  and only i f  one of the  fo l lowing  cond i t ions  ho lds  

6 + 0  and 2 B 6 + 3 - 3 < 0 ,  a y y a  ( i )  B # O  

( i i )  B = 0 6 + 0  and 

( i i i )  B f 0 6 = 0  and 

1 - 1/2 < 0,  

- + 1/2 > 0,  

6 
a 
B 

( i v )  B = 0 6 = 0.  

-3- 



Proof: 1).  First we show that the conditions are sufficient. We proceed 

by means of an energy estimate: multiply (2.1) by u and integrate to obtain 

However, 

(2.3) 

and therefore 

d 2 
(2.4) 1/2= I u dx < u(l)ux(l> - u(-l)ux(-l) 4 2  [u(l)-u(-1)] . 

-1 

This is an estimate for the L2 norm 

l/2 
def 1 

Ilul, E (1 u (x,t)dx) 
L -1 

As a function of time, the norm is non-increasing whenever the right-hand 

expression in (2.4) is negative or zero. 

If condition (iv) of the theorem holds then u(1) = u(-1) = 0 so that 

1 

d L 2  
' / 2 ~  1 u dx < 0, 

-1 

and therefore the norm does not increase. 

For condition (i), B f 0 f 6. Incorporating (2.lb) into (2.4) one gets 

d l 2  2 2 (2.5) ' 1 2 ~  1 u dx < - ($ + '/2 )u (1) + u(l)u(-1) + (5 - '/2 )u (-1). 
-1 

The right hand side of (2.5) w i l l  be non-positive if 

d --llu112 < 0 0  in which case, again, Suppose now that B -i: dt 2 

-4- 



6 f 0 as in case (ii); then (2.4) becomes 

and therefore the condition 

implies a non increasing norm. Similarly, case (iii) implies if 

y = 0, B f 0, so that 

V 2 ~ 1  d l 2  u dx = - ($+'/2)u 2 (1) < 0. 
-1 

Consider now separation of variables for (1.6): 

( V = A + B x  

tv = ex2t f 

- with A,  B and complex X f 0 determined by boundary conditions. By 

explicit check, we find: 

a. if IIVl12 is constant in time, then V(x,t) = constant; 

b. if LlVll decreases, then v(x,t) decays exponentially to zero 2 

with t. 

Since the general solution of (1.6) - (1.7) is a superposition of the 

functions (2.6), we see that (I) - (iv) are sufficient for convergence to 
steady state, as they imply 

-5-  



2 ) .  We now e s t a b l i s h  the n e c e s s i t y  of cond i t ions  ( i )  - ( i v )  of t he  

Theorem. Consider a s o l u t i o n  of t h e  form 

Ax -Ax 
w = e' t ( A e  +Be ). 

The func t ion  w s a t i s f i e s  (2 . l a ) .  I n  o rde r  f o r  w t o  s a t i s f y  (2 . lb )  f o r  

n o n t r i v i a l  A,B ,  X must s a t i s f y  the  fo l lowing  de terminenta l  equat ion  

2X -2 x 
(2.7) f(X) = e (y-AS)(a+BX) - e (a-BX)(y+X6) = 0. 

One s o l u t i o n  is  X = 0; then A = -B so  t h a t  w E 0. I f  (2.7) a l lows  a 

real non-zero so lu t ion  X then t h e r e  is a f u n c t i o n  w ( x , t )  which s a t i s f i e s  

(2 .1)  and grows i n  t i m e .  We show t h a t  i f  none of ( i - i v )  are s a t i s f i e d  real  

X w i l l  e x i s t ,  and thus  e s t a b l i s h  the  n e c e s s i t y  p a r t  of t he  theorem. Suppose 

f i r s t  t h a t  B f 0 f 6; then  f o r  X l a r g e  enough s i g n  f ( x )  = -sign( 86). L e t  

E be p o s i t i v e  and s m a l l  enough such t h a t  

Since 

f ( 0 )  = 0, 

f ' ( 0 )  = 4ay + 2yB - 2a6, 

and t h e r e f o r e  i f  condi t ion  ( i )  is v i o l a t e d  and i f  

then  f o r  X s u f f i c i e n t l y  l a r g e  

- 6 -  



hence there is a Xo real such that f (Ao)  = 0 and we can find a solution 

A t  2 A x  -XoX 0 w(x,t) = e (Ae + Be ) that increases in time. 

If now B = 0 f 6 then for large X 

sign f(x) = -sign a6 = -sign 6. 

From (2.8) f ' ( 0 )  = a(2y-6) and therefore 

Y sign f(E) = sign 6 sign(B - 1/2 ), 

Y 
SO that if -l/2 > 0 then 

for large A ,  again demonstrating the existence of a real Xo satisfying 

(2.6). A similar argument holds if B * 0 = 6. 

Hence, if none of the conditions (i) - (iv) of the theorem are satisfied 
no steady state solution exists as t + OD. This demonstrates the necessity 

of (i) - (iv) and the theorem is proved. Note that the theorem is a statement 

with the boundary conditions of the non-negativity of the operator -- 2 
(2.lb). 

a2 
ax 

Section 111 

This section discusses some aspects of the theory of the location of 

zeroes of real polynomials. We shall review a few classical conditions ensur- 

ing that a real polynomial has real, negative and distinct roots. These 

theorems will be used in the next section in connection with pseudospectral 

Chebyshev methods. 

-7- 



Throughout this section Q,(u) and Q,(u)  will be real polynomials of 

degree m and (m-1) (or m) respectively. 

Q , ( u )  and Q ( v )  form a positive pair if: a) the roots Definition 3.1. 

U * * * , V  of Q l  and the roots V;,***,U'- (or V' ***,Uk) of Q2 are all 

distinct real and negative; b) the roots alternate as follows 

2 

1' m m l  1' 

(or u. < u1 < u; * * *  < u* < u < 0); 1 m m 

(c) the highest coefficients of Ql and Q2 are of like sign. 

Lemma 3 1 characterizes such positive pairs 

Lemma 3.1: The polynomial 

is a Hurwitz polynomial (i.e., all of its roots have negative real parts) if 

and only if Q 1 ( U )  and Q 2 ( U )  form a positive pair. 

For the proof of this lemma see [ l ] ,  p. 228. 

Lemma 3.2: Let p and q be positive numbers, let Q, and Q2 form a 

positive pair and 

(3.3) u(v> = P Q p )  + 4Q2(v), 

then the roots of u(V) are real, negative, and, distinct. 

Proof: By Lemma 3 . 1  



i s  a Hurwitz polynomial. Therefore  g(z)  def ined  by 

g (z )  = (9 + ZP)h(Z) 

i s  a l s o  Hurwitz. But 

and by Lemma 3.1 pR ( v )  + qR2(v) and qRl (v )  + pvQ ( v )  form a p o s i t i v e  1 2 

p a i r .  

I n  p a r t i c u l a r  the  roo t s  of 

a r e  rea l ,  nega t ive ,  and d i s t i n c t ,  which proves the  lemma. 

We are now ready f o r  t he  two main r e s u l t s  of t h i s  s ec t ion .  

Lemma 3.3: L e t  p, q, r,  s be pos i t i ve  numbers and l e t  R1(u) 

and f i2(v)  be a p o s i t i v e  p a i r  of polynomials. Define u ( v )  and V(V)  by 

(3.4) 

Then u ( v )  and v ( v )  form a p o s i t i v e  p a i r .  

- Proof:  By Lemma 3.2 the  r o o t s  of U ( V )  and v(v) are rea l ,  nega t ive ,  

and d i s t i n c t .  It remains t o  prove tha t  they i n t e r l a c e .  

From the  d i scuss ion  i n  [ l ] ,  p.  227 i t  i s  clear t h a t  i f  g(V) and h ( v )  

form a p o s i t i v e  p a i r  then  pg + qh and g form a p o s i t i v e  p a i r .  Therefore  

(p /q)Ql  + R 2  and (r /s)Ql form a pos i t i ve  p a i r .  Suppose now t h a t  

( r /s)  > (p /q)  and de f ine  h = (p/q)fil + Q2 and g = ( (r / s ) - (p /q) )S$;  t hen  

c l e a r l y  h+g and h form a p o s i t i v e  p a i r .  This  completes t h e  proof .  

-9-  



Lemma 3.4.  Let Q l ( v ) ,  a2(u) and 81(v),02(u) be two positive pairs, 

let 

h(V) = n1e2 + a2e1. 

Then the roots of h(v) are real negative and distinct. 

Proof: By Lemma 3.1 the polynomials h(z) and g(z) defined by 

are Hurwitz polynomials, Therefore h(z) g(z) is a Hurwitz polynomial. 

But, since 

Lemma 3.1 implies that the polynomials 

form a positive pair and in particular their roots are real, negative, and I 
distinct. 

Section IV 

The pseudospectral Chebyshev method for space discretization of (2.1) in- 

volves seeking a polynomial uN(x,t) of degree N in x, such that 

2 

L i  j=1, ***,N-l xj = cos N f o r  x = 
a u N  
2 

(a) - - - = 
at ax 

-10- 



(4.1) and 

auN(XO,t) + B ax (xo,t) = 0 

We refer the reader to [2], [3] for a discussion of an efficient implementa- 

tion of (4.1). 
At Suppose now that uN(x,t) = e $N(x,A); then 

a24, 
(a) A$N - - = 0 

ax 2 for x = x j=l,***,N-l 
j 

(4.2) and 

In this section we will prove that for B6 < 0 the possible 

eigenvalues X are real, negative, and distinct. Hence (4.1) is amenable to 

standard iteration techniques . Define EN(x) by 

EN(x) is a polynomial of degree N in x; moreover by (4.2a) 

E ( x ) = O  j=l,***,N-l. 
N j  

(4.3) 

Let now TN(x) be the Nth order Chebyshev polynomial namely 

TN(x) = cos(N  COS-'^). 
The points x j=l,**.,N-l are the extrema of TN(x) in the open interval 

-1 < x < 1 and therefore 
j' 

(4.4) T'(x ) = 0. 
N j  

-1 1- 



Since EN and T; share the zeros x 0 < j < N, while their respective 

degrees are N and N-1, there exist values A, B independent of x such 

that: 

j’ 

EN(x) = (A+Bx)Ti(x), 

a2+, and therefore 
A+N(x,v - - (x,X) = (A+Bx)Ti(x). ( 4 . 5 )  2 ax 

where A and . B  are determined by (4.2b). 

Equation ( 4 . 5 )  can be solved explicitly as follows: 

Lemma 4.1. Let Jlh:(x,X) and x,(x,.X) defined by 

Then 

Proof .  First, note that the solution of the homogeneous equation 

a2 +N 
XON(X,X) - - (x,X> = 0, 

ax 2 

is not a polynomial in x and therefore the only solution of (4.5) which is a , 

polynomial is 
2 -1 -(D - A )  (A+Bx)Ti, 

where D = a/&. This completes the proof.  



are poly- -1 1 1 Note that upon defining L, = X , $,(x, T) and xN(x,$ 

nomials both in x and in V. If N = ZM, qN(x,A) is of order M in 

V and xN(x,A) is of order M+l in V. For simplicity we will assume 

that N = 2M; for odd N we only need to redefine $N and XN to get the 

proper degrees in v and reach the same conclusions. Note also that if 

Substituting (4.7) in ( 4 . 2 )  we get 

In order to have a nontrivial solution for A and B the determinant of the 

coefficients in ( 4 . 9 )  must vanish, i.e., 

and by (4.8) we arrive at the following characteristic equation 

(4.10) o = [aqN(l,X)+B ax aJI, (~,x)][Yx~(~,x)-~ ax aXN (+1,~)] 

-13- 



Note t h a t  t he  right-hand s i d e  of (4.10) i s  a polynomial of degree 2N+1 i n  

V; two of i t s  r o o t s  are v = V2 = 0 by (4.6). The lemma we are  about t o  

prove w i l l  show t h a t  the  o t h e r  r o o t s  a r e  real ,  nega t ive ,  and d i s t i n c t .  To 

e s t a b l i s h  t h i s  we need t h e  fo l lowing:  

1 

Lemma 4.2.  Let 

(4.11) fN(X,lJ) = c lJ k+l N 

and 

OD k+i ak+l 

ax k=O 

(4.12) 

Then ( l / p ) f N ( I , p )  and ( l / P ) g N ( l , P )  are Hurwitz polymia ls ,  that  i s ,  t h e i r  

r o o t s  have negat ive  real p a r t s .  

Proof:  From (4.11) and (4.12) 

(4.13) 

and i f  l~ i s  a roo t  of ( l / l J ) fN( l , l J )  t hen  

(4 .14)  WN(l , t )  = 0. 

I n  [ 2 ]  i t  has been shown t h a t  

rea l  P < 0. 

wN(x,t) dec reases  i n  t i m e  and t h e r e f o r e  

A s imi l a r  argument holds  f o r  (4.12). 

-14- 



Lemma 4.2 is essential for proving: 

Lemma 4.3. Let 

Then Q , ( v )  and Q2(u)  form a positive pair. 

Proof: Construct 

h(P) = Q l ( I J  2 + IJQ2(IJ 2 1, 

W 2k+2 
T ( 1 )  2k+i a 

2k+2 N T ( 1 )  + 1 IJ 
2k a2k+1 OD 

ax k=O 2k+l N h ( v )  = 1 IJ 
k=O ax 

By Lemma 4 . 2 ,  h ( p )  

Q ( V )  and Q (u) form a positive pair. 

is a Hurwitz polynomial and therefore by Lemma 3.1, 

1 2 

Lemma 4 . 4 .  Let a > 0, B > 0, Y > 0 and 6 < 0. Then 

and 

form a positive pair. 

-1  5- 



Proof :  The proof i s  a d i r e c t  consequence of Lemmas 3 . 3  and 4 . 3  by 

i d e n t i f y i n g  

p = a ,  q = @ ,  r = y ,  s = - 6 .  

The r e s u l t s  of Lemma 4 . 3  and 4 . 4  hold i f  w e  r e p l a c e  GN by X” 

We are now i n  a p o s i t i o n  t o  s ta te  t h e  main r e s u l t  of t h i s  paper:  

Theorem 4 . 5 .  Let  a,  @, y > 0 and 6 < 0; then  t h e  s o l u t i o n s  h of 

( 4 . 2 )  - i.e., t h e  e igenvalues  of t h e  Chebyshev second d e r i v a t i v e s  o p e r a t o r  

wi th  boundary condi t ions ,  a r e  rea l ,  n e g a t i v e ,  and d i s t i n c t .  

Proof:  F i r s t  of a l l ,  ze ro  cannot be an e igenvalue .  By s u b s t i t u t i n g  

h = 0 i n t o  ( 4 . 5 1 ,  we reach 

0 

-t (A + Bx)TN(x). 
ax 2 

The second d e r i v a t i v e  is a polynomial of degree N-2 o r  less, which vanishes  
0 

a t  t h e  N-1 d i s t i n c t  ze ros  of TN, and t h u s  van i shes  i d e n t i c a l l y .  

Theref ore :  

% = p + qx. 

It i s  easy t o  check t h a t  no c o n s t a n t s  p and q,  no t  both ze ro ,  can be found 

t o  s a t i s f y  the boundary c o n d i t i o n s ,  i f  a,B,y > 0 and 6 < 0. As t h e  

s o l u t i o n s  of ( 4 . 2 )  a l s o  s a t i s f y  ( 4 . 1 0 ) ,  we may cons ide r  on ly  t h e  nonzero r o o t s  

-16- 



of (4.10) as  poss ib l e  e igenvalues .  Let 

by Lemma 4 . 4  Q,(v> and Q2(v> form a p o s i t i v e  p a i r  and Ol(u)  and e2(u)  

form a p o s i t i v e  p a i r .  Equation j4.iOj can be w r i t t e n  a s  

and by Lemma 3 . 4  t he  roo t s  v * * *  v must be r e a l ,  nega t ive ,  and d i s -  

t i n c t .  This proves the  theorem. 

1’ ’ 211-1 

Note : The condi t ions  of Theorem 4.5 can be re laxed  t o  inc lude  the  f o l l o -  

wing cases 

1) Y > 0 ,  6 < 0 ,  

2 )  a = O  o r  B = 0. 

However, t he  r e s u l t s  do not q u i t e  cover the  cases  included i n  Theorem 2.1, f o r  

example the  case  a,f?,Y,6 > 0 ,  3 Y ‘/2. 
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Section V 

In many applications of spectral methods it is preferable to divide the 

computational domain into several subdomains and apply the pseudospectral 

Chebyshev method for each domain [ 4 ] .  The solutions in the subdomains are 

then required t o  satisfy certain continuity relations. It is the purpose of 

this section to show that this procedure gives rise to a numerical operator 

with real, negative, and distinct eigenvalues. 

Consider the model problem 

(5.1) 

w = w  - 1 < x < 3  
t xx 

w(-1) = w(3) = 0. 

We divide the domain into two subdomains, -1 < x < 1 and 1 < x < 3, and 

apply the pseudospectral method t o  each subdomain. Thus two polynomials uN, 

vN of degree N are constructed satisfying 

CI 

(5.2) 

aUN aLUN 
at ax 
- = -  

2 

2 
aVN a VN - = -  

2 at ax 

nj x = x  =cos- j N j=1, ***,N-1 

= 2 + cos - nj j=1, ***,N-1 
= 'j N 

u p )  = VN(3) = 0, 

and the continuity equations: 

(5.3) 

(l,t>. 
aU 

ax ax 
N aVN (b) - (1,t) = -  
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Equation (5.3) is implemented by setting uN(l,t) = vN(1st> = f(t>, where 

f(t) satisfies (5.3b) in the collocation sense. 

Now define 

v (x,t) = v (2-x,t), N N 

to get: 

(5.4) 

while (5.3) becomes : 

(5.5) 

2 
aUN a UN 
at ax 
- = -  

2 

2 
aVN a VN 
at ax 
- = -  

2 

- aVN (l’t) = --  (1,t). ax ax 

These satisfy the differential equations: 

a R  aLR - = -  
2 at ax 

(5.7) 
- = -  as a2s 
at ax 2 ’  

j at x = x  

with boundary conditions 
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(a 1 R(1,t) = R(-1,t) = 0 

as 
(b) ax (1,t) = S(-1,t) = 0. 

From the discussion in Section IV, it follows that the eigenvalues of (5.7) - 
(5.8) are real, negative and distinct, and the problem is therefore amenable 

to standard iteration techniques. 

An application to the above analysis has been made to the numerical solu- 

tion of the full potential equation. The flow around a wing is described in 

terms of a potential which satisfies 

(5.9) 
ao a ao + -  ( P T )  = 0. a ax ( P  ay 

The density P is obtained in terms of by 

1 

(5.10) P = [l - M, 2 - y-1 (oxMY-l)]'-'. 2 2 
2 

The wing is represented by the "small disturbance" boundary conditions 

(5.11) 6 = -  df o 
y dx x 

on the wing, where y = f(x) is the geometric description of the wing. 

We have used three computational domains: the middle one represents the 

wing while the others contain regions of free flow (see Figure 2). The use of 

three domains bunches grid points at the wing 'tips and allows increased accu- 

racy. Had we used one computational domain, the middle segment, representing 

the wing would have occupied a reign of coarse mesh, producing poor 

resolution. 

We solve (5.9) by modifying it to 

(5.12) 
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and using the DuFort-Frankel a lgori thm f o r  (5.12). 

On the r e s t  of the  boundary (not  inc luding  the  wing) we s p e c i f i e d  

- =  0 
a Y  

on AB, CD 

(5.13) 

0 = qcDx on DEFGHA, 

(see Figure  2) and 

9, 9 continuous ac ross  BG, CF. 
X 

It i s  e s s e n t i a l  f o r  t he  s t a b i l i t y  of t he  DuFort-Frankel a lgo r i thm t h a t  t he  

e igenvalues  a r e  r e a l  and negat ive ,  a f a c t  t h a t  i s  e s t a b l i s h e d  above. 

A t y p i c a l  flow over a pa rabo l i c  wing 

-1 < x < 1, 2 f ( x )  = T(1-x ) 

for M, = .5 and T = .2 i s  presented i n  Figure 3.  
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Figure  1. A Chebyshev mesh 17 x 9 
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Figure  2. Three Chebyshev meshes. BC r e p r e s e n t s  t he  wing. 
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Figure  3.  Veloc i ty  p r o f i l e  on the  wing. 
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